If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+30x=52000
We move all terms to the left:
x^2+30x-(52000)=0
a = 1; b = 30; c = -52000;
Δ = b2-4ac
Δ = 302-4·1·(-52000)
Δ = 208900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208900}=\sqrt{100*2089}=\sqrt{100}*\sqrt{2089}=10\sqrt{2089}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{2089}}{2*1}=\frac{-30-10\sqrt{2089}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{2089}}{2*1}=\frac{-30+10\sqrt{2089}}{2} $
| -4-49+42=-4n-1 | | 10(0.3+0.1x)=10(0.9+0.2x) | | 3x+8=3x+32 | | 3x+8=3x+31 | | 5=-10k-8 | | 1z/4+1=-7 | | 3x+8=3x+27 | | 3x+8=3x+26 | | (h+7)^=20 | | 3x+8=3x+23 | | 3x+8=3x+22 | | 10-6p=-14 | | 3m^2+15=63 | | -12p+3=-1 | | 0.09÷x=1 | | 2g+3=5g+12 | | -7x+5-3=-20-6- | | 13x+30-2x=8x-45 | | -y+10=9y | | 1p/2-5=35 | | 60=96t-16t^{2} | | 0.3x−4=0.5x+1 | | k2-18k+8=-9 | | 3x+7-7=40-7= | | Y-3=6+4y | | F(x)=x^2+16x+62 | | 1x/4=-16 | | -3k+14=-6 | | 25y+147-37=3432 | | -7x+5-3=-20-6-7x | | 2j^2=–7j−3 | | 13–2x=–7 |